If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x^2-16x+10=0
a = -4; b = -16; c = +10;
Δ = b2-4ac
Δ = -162-4·(-4)·10
Δ = 416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{416}=\sqrt{16*26}=\sqrt{16}*\sqrt{26}=4\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{26}}{2*-4}=\frac{16-4\sqrt{26}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{26}}{2*-4}=\frac{16+4\sqrt{26}}{-8} $
| 10x+18=29 | | 4s+46=158 | | 8–3d=8+d | | .7x+x=54 | | 4y+17y+4y=0 | | 66=(x+1) | | -8x^2-7=193 | | -4=(x-2) | | 2w+3/3=1 | | 2w+3/1=1 | | 13+4y=68+y | | 5-3x=7-7x | | 2.3(10.3r-2.8)=43.2 | | 2(3b+7)=4(4b+2) | | 28+8x-x^2=0 | | 7x/6-30/x=x/3 | | (x+5)(x-6)=x^2-30 | | x/4+x/3=x/7 | | 2x-(21-3)/3+5X=4X+3(2x4-3) | | 3X-6=3(5x3-23/3) | | 3x^2+3x+x+1=54 | | 3x^2+4x=53 | | (3x+4)+(2x+1)=0 | | x/9+8=15 | | 3-2(a+3)=12 | | 12y+31=139 | | 33=-4d+9 | | 1/5x+3=16 | | 8+3w+W=-3 | | (3x+1)/(6x+7)=0 | | t÷6-6=9 | | 4=x8(4+4) |